

Design and development of innovative beverages

Prof. Paola Pittia

Facoltà di Bioscienze e Tecnologie Agro-alimentari ed ambientali

Università di Teramo

ISEKI-Food Association

ppittia@unite.it

WEBINAR APRIL, 10 2018

Beverages: role in health and wellbeing

Water and beverages: essential component of humans diet to fulfil essential metabolic activities

Water in humans: adult: 60% (of the body weight)

children: 80%

Body water content vary during the day time, depending on water losses = ca 2.0-

- 2.5 I/day (breath, urine, feces, sweat)
- 1. Physiological functions:
 - integrity of cells and osmotic equilibrium
 - Mineral salts

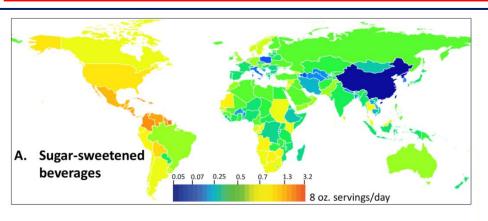
Recommended amount: 1-2 I/day of water depending on :

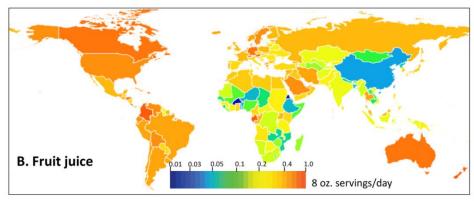
- season, physical activity, sex, age, body build
- 2. **Therapeutic action** (hydrotherapy): for specific illnesses (hydroponic treatments with specific mineral waters)

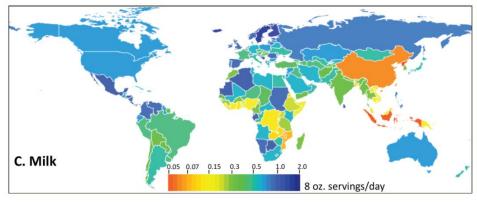
Beverages: role in health and wellbeing

BEVERAGES definition:

"Any liquid that can quench the thirst"


- Beverage is a noun that defines any kind of liquid. Water, tea, coffee, milk, juice, beer and any kind of drinks......
- Beverage can be hot and clod or an alcohol item and the beverage can be used for every thing that you can drink but sometimes it's define gone to style of drinks like soft drinks.




Current consumption

World consumption of the main beverage categories (2016)

Beverages: classification criteria?

Chemical "complexity"

Simple, single ingredient (water...) Formulated (soft-drinks, ...)

Composition

- Presence of alcohol (alcoholic/non alcoholic)
- carbonation (still/sparkling)
- main component (fruit/vegetable/milk, ..)
- sugar (added/no added/...)

Processing

No processed (milk)

Pressing (juices)

Diffusion / infusion / percolation (coffee, tea,)

Temperature of serving

Cold

wam/hot

Stability

- fresh/short shelf-life
- shelf-stable

- ...

Old (type)	Old (examples)	New/innovative (type)	New (examples)
water	Mineral (still/sparkling) water	Flavoured	Apple, lemon,
Infusion/percolation /	Coffee/tea	Origin, raw materials	Herbal infusions Monovarietal coffee
Natural/no processed	milk	Milk-based drinks	
Juices	fruit	Juices (e.g. seeds)	Quinoa, rice, almond
Juices (liquid)	fruit	Smooties	Single fruit/mix
Soft drinks	Orange soft drinks, Coca Cola,	Fortified/energy drinks	Various

Increased importance of some quality attributes:

- Healthy
- Sensory

Naturally present ⇒Added/formulated

Four key areas of market trends of beverage innovation

1. Formulation

- <u>Presence</u> of desired ingredients (e.g. natural sweeteners, probiotics, proteins, antioxidants,)
- <u>Absence/exclusion</u> of undesired ingredients (artificial colours, high-fructose corn syrup, preservatives, caffeine, ...)

NUTRITION INFORMATION				
Per	100ml	330ml	RI(%')	
Energy	98kJ/23kcal	323kJ/76kcal	4	
Fat	Og	Og	0	
of which saturates	Og	Og	0	
Carbohydrate	5.8g	19 g	7	
of which sugars	5.8g	19 g	21	
Protein	Og	Og	0	
Salt	Og	Og	0	
'Reference intake of an average adult (8400kJ/2000Kcal)				

Naturally present ⇒Added/formulated

Four key areas of market trends leading beverage innovation 2. Function

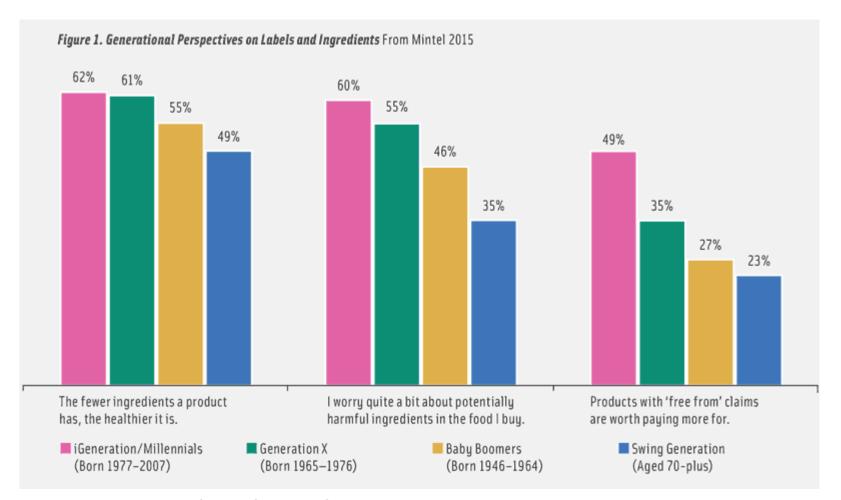
- Energy (sport)
- Cognitive health
- Digestive health
- Beauty and wellness
- Age
 - Children
 - Eldery
 -

ACMCERRANT

Four key areas of market trends leading beverage innovation

- 3. Experience and convenience
 - Packaging
 - Serving
 - Use convenience (self-cold/warm)
 - Shelf-life (reduced-fresh like enhanced)

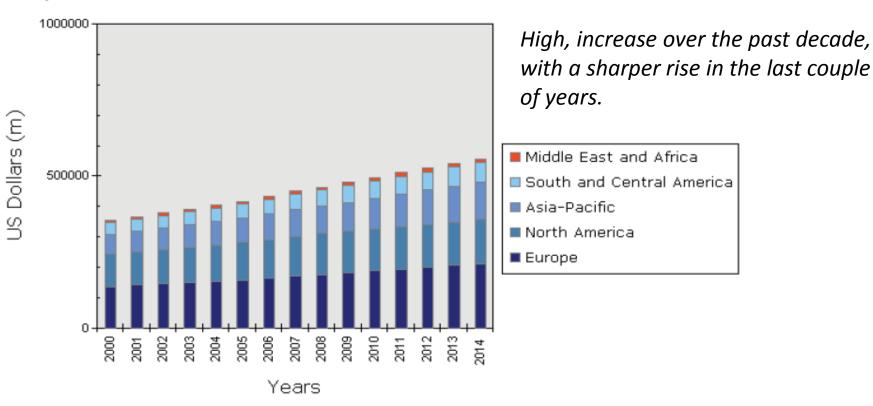
Four key areas of market trends leading beverage innovation


- 4. Taste and sensory properties
 - Flavour
 - Taste (sweeteness, acidity)
 - viscosity and body

Beverages: market trends

Top 10 Functional Foods Trends

A. Elizabeth Sloan, Food Technology, 2016, 70 (4)

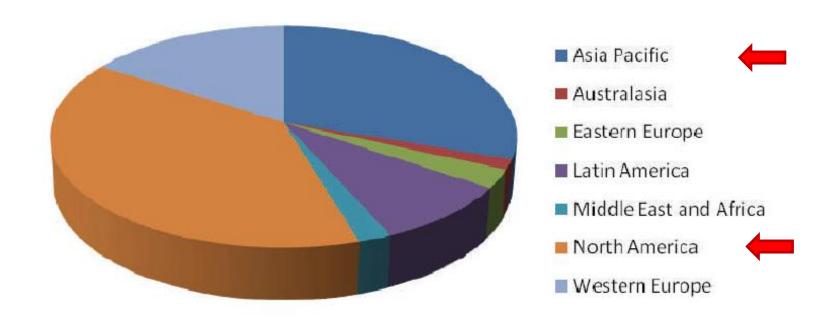


Beverages: market trends

Functional beverage market trend

Market Value by Country for 2000-2014 Represented in US\$ Millions

Source: Datamonitor



Beverages: market trends

Functional beverage market trend

2009 Worldwide Fortified Beverage Sales by Region

Beverages innovation: where and how?

1. Processing

- 1. New technologies
- 2. Optimisation of conventional technologies
- 3. Combination of technologies

2. Formulation

- 1. Target consumers
- 2. Diversification
- 3. New nutritional/consumption trends
- 4. New raw materials/sources

3. Convenience

- 1. Packaging
- 2. Shelf-life (shorter/longer)
- 3.

Use of innovative technologies

- High Hydrostatic Pressure (fresh, refrigerated beverages and juices)

Stability

Improved Quality and Healthy properties

- High Dynamic Pressure

Dispersion/Homogeneisation

Physical properties (viscosity)

Stability

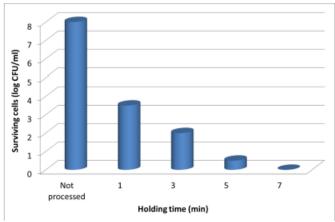
- Radiofrequency and Pulsed Electric Fields (PEF)

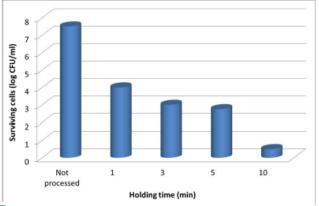
Improved extraction juices

Stability

High Hydrostatic Pressure (case studies)

SAFETY AND SHELF-LIFE IMPROVED QUALITY AND HEALTHY PROPERTIES




Figure 1: Total aerobic microflora of HPP orange juice versus holding time at 600 MPa (Erkmen et al. 2004)

Juice	Pathogen	Initial counts (Not processed) (log cfu/ml)	Survival after HPP (600 MPa, 2 min) (log cfu/ml)
Orange	E. coli	8.09	2.70
	S. enteritidis	8.40	No detected
Grape	E. coli	8.34	No detected
	S. enteritidis	8.09	No detected
Carrot	E. coli	8.10	No detected
	S. enteritidis	8.40	0.81
Coconut	E. coli	7.26	< 1 log
	S. Typhimurium	7.11	< 1 log

Table 1: Survival of pathogens on orange, carrot, grape juice (Teo et al., 2001) and coconut water (Lukas, 2013) processed at 600 MPa during 2 min.

7.25

L. monocytogenes

re 2: Total aerobic microflora of HPP peach juice *versus* holding e at 600 MPa (Erkmen *et al.* 2004)

High Hydrostatic Pressure (case studies)

SAFETY AND SHELF-LIFE IMPROVED QUALITY AND HEALTHY PROPERTIES

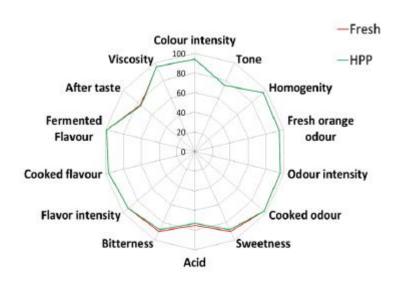


Figure 3: Sensorial evaluation by expert panelists of HPP (600MPa, 1 min) and fresh orange juice (Matser et al., 2012).

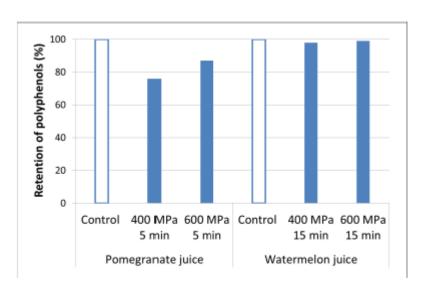
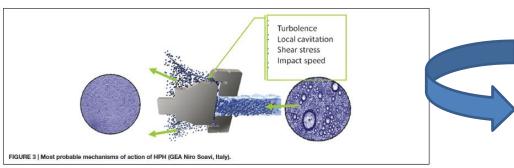



Figure 5: Retention of polyphenols in pomegranate (Ferrari et al. 2010) and watermelon juices after HPP processing (Liu et al., 2013).

- High Dynamic Pressure

- **Emulsification**
- Lipid/apolar compounds dispersion
- Viscosity
- **Bioactive compounds** extractability

Microbial stability

TABLE 1 | High pressure homogenization (HPH) microbial inactivation in relation to the model system, species and process conditions adopted.

Matrix	Microorganisms	Reduction	Conditions	Homogenizer/type of valve	Reference
Saline solution and nisin	Escherichia coli K12	7.0 log	Tin = $5P = 300$ Tout = 70	Axial-flown through orifice valve	Taylor et al., 2007
PBS buffer (pH 7)	Escherichia coli O157:H7 ATCC 35150	8.0 log (after three passes)	Tin = 25 P = 200 $Tout = NR flow 1.5 L/h$	Counterjet dispergator	Vachon et al., 2002
LB nutrient	Escherichia coli	7.0 log	300 MPa	Stansted high-pressure homogenizer (model FPG11300:350	Donsì et al., 2009b

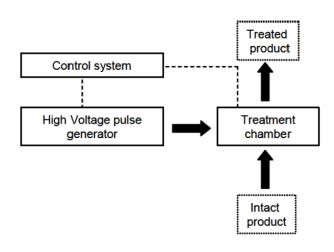
- High Dynamic Pressure

TABLE 2 | High pressure homogenization microbial inactivation in relation to the food matrix, species and process conditions adopted.

Matrix	Microorganisms	Reduction	Conditions	Homogenizer/type of valve	Reference
Milk	Yersinia enterocolitica, Listeria monocytoges	Yersinia enterocolitica 5 log at 150 MPa Listeria monocytogenes : the same	P range = 40-150 MPa Tout max = 65	PS valve, Gea Homogenizer	Lanciotti et al., 1994
Egg yolk 10%, yoghurt 13%, sunflower oil 60%, water in relation to pH and NaCl	Salmonella enteritidis	Reduction was obtained at 50 MPa with pH 4 and 2% NaCl. No re-growth at 10°C	P range = 0.1-50 MPa	PS valve, Gea Homogenizer	Guerzoni et al., 2002
Skim, soy, and strawberry- raspberry milk	Escherichia coli MG1655	Skim 3.5 log Soy 3.0 log Straw/rasp 3.0 log	Tin = 25, P = 300 MPa, Tout = 18	Counterjet dispergator	Diels et al., 2005
Bovine milk	Pseudomonas fluorescens AFT 36	6 log	Tin = $45 P = 250$ Tout = 76.8	Axial-flown through orifice valve	Hayes et al., 2005
Milk	Staphylococcus aureus CECT 976	7 log	Tin = $20 P = 330$ Tout = NR flow 16 L/h	Axial-flown through orifice valve	López-Pedemonte et al., 2006
Orange juice	Escherichia coli O58:H21 ATCC 10536, Escherichia coli O157:H7 CCUG 44857	3.9 log (O58:H21) 3.7 log (O157:H7)	Tin = $20 P = 300$ Tout = NR, flow 18 L/h	Axial-flown through orifice valve	Brinez et al., 2006b
Milk	Listeria innocua ATCC 33090	2.7 log	Tin = 20, P = 300; Tout = NR, flow = 18 L/h	Axial-flown through orifice valve	Brinez et al., 2006a
Milk and orange juice	Staphylococcus aureus ATCC 13565	Milk 3.6 log Orange juice 4.2 log	Tin = $20 P = 300$ Tout = 18 flow 18 L/h	Axial-flown through orifice valve	Brinez et al., 2007

- High Dynamic Pressure: no effects on spores!

Table 1 | Overview of literature on non-successful HPH/UHPH inactivation of bacterial spores.


·								
Equipment	Matrix	Spore strain	Initial count (spore/mL)	Maximal reduction [log ₁₀ (N/N ₀)]	Pressure (MPa)	T _{inlet} (°C)	Max 7 _{valve} (°C)	Source
Microfluidizer®	Ice cream	B. licheniformis ATCC 14580	2.00E+04	0.55	200	50	?	(18)
Niro Soavi homogenizer	Double distilled water	B. cereus SV3, SV98, B. subtilis SV50, SV108	1.00E + 07 - 1.00E + 08	<0.5 with single pass – five with three cycles	150	20	?	(21)
Panda – Niro Soavi	Laboratory medium at pH 4.5 and 3.5	A. acidoterrestris DSMZ 2498, Γ4, and c8	1.00E + 05	0.67 (140–170 MPa)	140–170	?	?	(19)
Panda – Niro Soavi	Malt extract broth (pH 4.5) and apple juice (pH 3.7)	A. acidoterrestris DSMZ 2498 and Γ4	1.00E + 05	0.82 ± 0.07	140	?	?	(23)

Georget et al, 2014

- New technologies : Pulsed Electric Fields

Figure 3. Scheme of a pulsed electric field system for food processing.

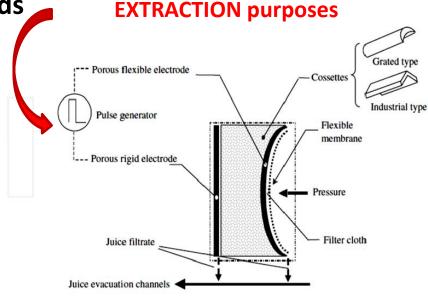
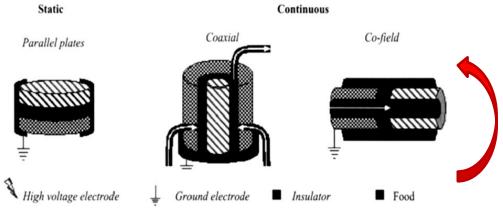
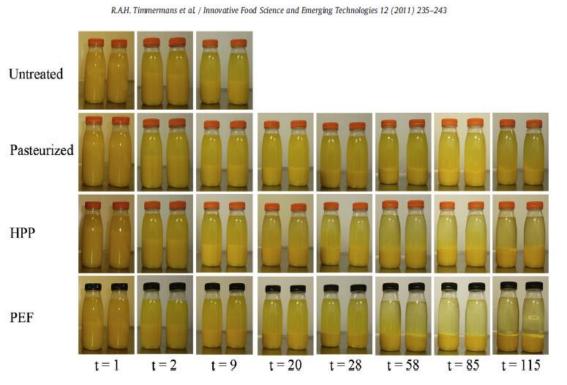


Figure 11. Schematic of a one chamber configuration of plate and frame filter press




Figure 8. Schematic configurations of the three most used PEF treatment chambers.

STABILISATION purposes

- New technologies : need to be optimised for enzymatic stability and quality over storage time

Similar microbial quality and stability of orange juices treated by HT, HP and PEF

HPP & PEF = sedimentation and cloud degradation due to activity of PME

Fig. 6. Observed sedimentation and cloud loss of untreated, mild heat pasteurized, high pressure pasteurized (HPP) and pulsed electric field (PEF) processed orange juice bottles during the first 115 days of storage at 4 °C.

- New technologies : HHP...new approaches

HPP of enzymes in fruit purees & juices...

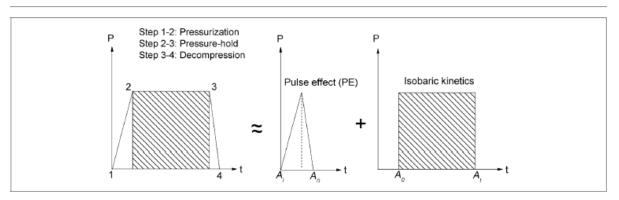


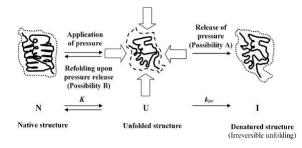
Figure 2—Mechanism of segregation of pulse-pressure and pressure-hold period for kinetic modeling describing the effects of HPP on enzyme activity, *P* and *t* denote the pressure and processing time, respectively.

Table 2-Effect of pulse pressure on the enzymes in fruit purees and juices.

Sample (medium)	Enzyme	Target P/T in (MPa/°C)	CUT/DCT> in (min/min)	Activation or inactivation	Maximum <i>PE</i> (log) values (treatment condition)	Reference
Apple juice (pH 3-4; 12 °Brix)	Amylase	100-400/6-40	0.5-3/<0.15	Inactivation	1.79 (400 MPa/30 °C/pH 3)	Riahi and Ramaswamy (2004)
Pineapple puree (pH 3-4; 12 °Brix)	PPO and POD	200-500/30-60	0.8-1.8/<0.15	Inactivation	0.332 (PPO) and 0.319 (POD) (500 MPa/60 °C/pH3)	Chakraborty and others (2013)
Strawberry puree (pH 3.52; 6.5 °Brix)	PPO, PME, and PG	200-600/40-80	0.25-0.75/<0.15	Inactivation	0.135 (PPO), 0.223 (PME), and 0.315 PG) (600 MPa/80 °C/30% added sugar)	Chakraborty (2012)
Litchi juice (pH 4)	PPO and POD	300-600/30	1.1-2.11/<0.15	Activation for both (max.> 130% and 225%, respectively, at 300 MPa)	-	Kaushik and others (2013)
Apple juice (pH 3.5, 12 °Brix)	PME	250-400/25	1.5-3/<0.25	Inactivation	1.05 (400 MPa/25 °C/-)	Riahi and Ramaswamy (2003)

P, pressure; T, temperature; CUT, pressure come-up time; DCT, decompression time; PE, pulse-effect (calculated using Eq. 6); Max., maximum.

Comprehensive Reviews in Food Science and Food Safety • Vol. 13, 2014



- New technologies : HHP and enzyme inactivation

Table 6-Summary of high-pressure inactivation of nonoxidative and nonpectic enzymes in fruit purees and juices.

Sample (medium)	Enzyme investigated	Range given as MPa/min/°C/ others, if any	Max. inactivation at (MPa/min/°C/ others, if any)	Other observation	Reference
Kiwifruit juice	Actinidin	200-800/-/25-50	-	90% inactivation at 500 MPa/3.2 min/50 °C; P-T synergy at > 600 MPa, > 40 °C; 26-fold rise in k from 25 °C to 50 °C at 600 MPa	Katsaros and others (2009)
Apple juice (pH 3 to 4, 12 °Brix)	Amylase	100-400/0-60/6-40	90% (400/30/22/pH3)	30.5% and 93.1% inactivation due to pulse pressure at 100 and 400 MPa, respectively.	Riahi and Ramaswamy (2004)
Tomato juice (Cv. Admiro)	LOX	100-650/12/20	100% (550/12/20)	Activation at < 400 MPa	Rodrigo and others (2007)
,	HPL	100-650/12/20	80% (650/12/20)	20% inactivation at 300 MPa/12 min/20 ℃	22/2007)
Tomato puree (21.4 °Brix)	LOX	100-650/0-58/10-60	-	Maximum $k = 0.5835$ min ⁻¹ at 650 MPa/20 °C; $P-T$ were antagonistic at $T \ge$ 50 °C and $P < 300$ MPa	Rodrigo and others (2006)

P, pressure in MPa; T, temperature in °C; k, Inactivation rate constant in min-1; Max., maximum.

Comprehensive Reviews in Food Science and Food Safety • Vol. 13, 2014

AIMS

- Convenience and easy use
- New materials
- Sustainability and environmental friendly

Mineral water «Sant'Anna» Bio Bottle :

bioplastic (PLA) obtained from plants (corn, cassava, sugar cane or beets, Ingeo™)

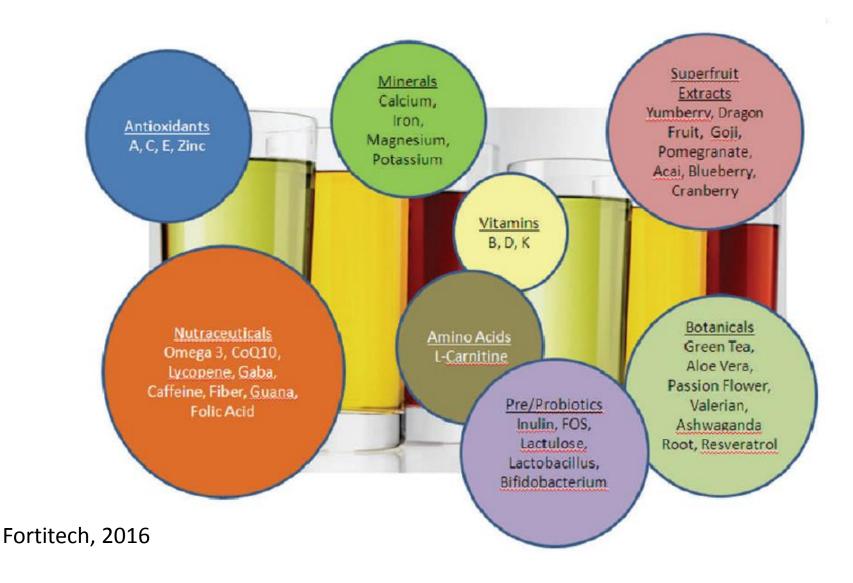
- biodegradabie: 100% (80 days under compostable conditions)

Glass closures for glass whisky bottles (New Master of Malt)

Can with an integrated straw (Ball Packaging Europe)

Flexible multi-layer stand-up pouch, with an intermediate seal which forms two separate compartments (Mixpack)

Fully compostable cup (Reduce.Reuse.Grow.)
The cup is studded with seeds for native Californian wildflowers that will come to life post-use.
Eventually the cups could be made based on location, so that each cup contains native seeds from the area it is served.



New edible coffee cup called the Scoff-ee (KFC & The Robin Collective)
The packaging is made from biscuit, sugar paper and white chocolate.
The cup looks similar to the standard KFC cup.

Besides water.....naturally present/added

IN THE PAST.....

	Nutritional value	Technological functionality	Energy	Sensory properties
proteins	YES (eg. Milk)	emulsifiers	YES	Colour/visual
HMW carbohydrates	YES	Viscosity/stabilisation	YES	Viscosity/body
LMW carbohydrates	YES	Viscosity Stability (aw)	YES	Sweeteness
Lipids	YES	Apolar compounds vehicle, emulsions	YES	Aroma/colour
Odorous volatile compounds	NO	Sensory properties	NO	Aroma
Pigments	NO	Sensory properties	NO	Colour
Acids	NO	Stability (pH) Sensory properties	NO	Acidity

Besides water.....naturally present/added

INNOVATIVE

	Technological functionality	examples	Others
Antioxidants	Healthy properties Stability	vitamins A, C, and E Phenolic compounds,	Boost immune system, improve Blood circulation, mental activity
Prebiotic/pro biotic	Healthy properties (gut)	inulin, fructooligosaccharides (FOS), lactulose Various m.o.	Ability to reduce diseases (e.g. osteoporosis), to lower triglyceride and cholesterol levels; to combat food allergies
Minerals	Healthy properties	Ca, Mg, K, Fe,	Various
Vitamines	Healthy properties	Vitamines B, C,	Various
Amino Acids	Energy and healthy properties (sport/energy drinks)	L-Leucine, L-Isoleucine, and L-Valine	Muscle development, recovery from injury; aid in the growth and strengthening bones, improved immune system
Nutraceutical s	Physiological/metab olic effects	Fibers, omega 3-FA,	Various
Psyco-active compounds	Energy, menthal	Caffeine, taurine,	

Besides water.....naturally present/added

INNOVATIVE

Product group	Products/product ranges	Forms	Typical applications***
Carotenoids	Lucarotin [®] [Beta-carotene, E 160a (ii)]	Powder, emulsions, dispersions*	Soft drinks, juices & juice mixes, beer/beer mixes, instant powder drinks
	Natural Beta-carotene with mixed-carotenoids from algae E160a (i)	Powder, suspensions*	Soft drinks, juices & juice mixes, instant powder drinks
	LycoVit [®] (Lycopene, E 160d)	Oil, powder	Soft drinks, juices & juice mixes, instant powder drinks
	Xangold [®] (Lutein, Lutein ester, E 161b)	Oil, powder	Soft drinks, juices & juice mixes, instant powder drinks
Beverage clarifiers/ stabilizers	Divergan [®]	Powder (used in filtration/ clarification step, not used in end-product directly)	Wine and beer, ready-to-drink tea
	Crosspure [®]	Powder (used in filtration/ clarification step, not used in end-product directly)	Wine and beer, ready-to-drink tea
Caffeine	Caffeine	Powder	Soft drinks, juices & juice mixes, beer/beer mixes, instant powder drinks
Vitamins**	Vitamin A	Oil, powder	Soft drinks, juices & juice mixes, instant powder drinks
	Vitamin E	Oil, powder	Soft drinks, juices & juice mixes, instant powder drinks
	Vitamin B ₂ (Riboflavin)	Powder	Soft drinks, juices & juice mixes, beer & beer mixes, instant powder drinks
Health Ingredients &	Tonalin® Conjugated linoleic acid (CLA)	Oil, powder	Soft drinks, juices & juice mixes, instant powder drinks
Lipids	Vegapure [®] Plant sterols	Oil, powder	Soft drinks, juices & juice mixes, instant powder drinks

Oils/dispersions are available for producers of colorant emulsions.

*** Where regulations allow use.

^{**} Other vitamins (B_s, B₁₂, D₃, K) as well as antioxidants (D,L-alpha-tocopherol, natural mixed-tocopherol) are available for use in beverages, other food applications, flavours and colorants.

Besides water.....naturally present/added

INNOVATIVE...functional ingredients in mix

Antioxidant Cocktail for Healthy Aging

Nutrient	Per Serving/Dosage
Vitamin E	20%
Vitamin C	25%
Beta-Carotene	0.25 mg
EGCG	20 mg
Resveratrol	20 mg
Coenzyme Q10	4 mg
Lycopene	1 mg
Lutein	1 mg
Zeaxanthin	0.5 mg
Niacin	10%
Calpan	10%
Vitamin B6	10%
Biotin	10%
Vitamin B12	10%
Omega 3	40 mg

Energy Stick Pack

Nutrient	Per Serving/Dosage	
Coenzyme Q10	5 mg	
L-Carnitine	15 mg	
D-Ribose	50 mg	
Magnesium	40 mg	
Taurine	100 mg	
Caffeine	40 mg	
Niacinamide	2 mg	
Pantothenic Acid	2 mg	
Vitamin B6	1 mg	
Vitamin B12	2 mg	
Vitamin C	12 mg	

Besides water.....naturally present/added

INNOVATIVE...new flavour trends

Flavor	2006	2009
Orange	5,9%	4.6%
Lemon	7.6%	4,1%
Apple	3,9%	3,7%
Strawberry	2.6%	3,7%
Chocolate	2.6%	3,0%
Vanilla	2.6%	2,9%
Grape	2.1%	2,6%
Berry	3.1%	2,4%
Pomegranate	0.4%	2,4%
Peach	2.3%	2,3%
Mango	1.2%	2,3%
Citrus	2,4%	2,1%
Lime	3.3%	1,9%
Grapefruit	2.1%	1,7%
Blueberry	0.7%	1,6%

Source: Business Insights

Pomegranate Strawberry Mango **Tropical Blueberry** Acai Pear Grape **Tangerine** Chocolate Coffee Goji Ginseng **Almond** Mandarin Vanilla **Blackberry Dragon fruit Blood orange** Cinnamon

Besides water.....naturally present/added

INNOVATION: sweeteners

- Naturally present (fruit juices)
- No sugar (sucrose, fructose,)
- Sweeteners (alternative, intensive)

Re-formulation for stability and sensory perception...

Natural/plant extracts (stevia, honey, plant extracts)

agave, ...


Besides water.....naturally present/added

INNOVATION: Colours

- Naturally present (pigments from fruit and vegetables)
- Colouring foodstuff (EU regulated)

Global natural food colors revenue share, by application, 2015 (%)

Besides water.....naturally present/added

INNOVATION: Colours

Colouring foodstuff (EU regulated): food extracts with colouring properties

EC guidelines for the classification and use of colouring food in food products (29 Nov 2013 EC)

AIM: simple e practical differentiation test to discriminate additive food colours and colouring foods

Video on EC guidance notes: https://www.youtube.com/watch?v=0-u8dIGQyfc

Besides water.....naturally present/added

INNOVATION: Colours

Colouring foodstuff

Main issues: stability (highly sensitive to pH, light, temperature and other matrix and environmental conditions, ...

Thermal stress

pH stress (3.3)

Beverage innovation, traditional/conventional products

...need to improve appealing of traditional/conventional products

Example: Fruit juices

- Introduction of new cultivars (higher polyphenolic content)
- Alternative processing methods to preserve bioactive compounds
- blending and formulation of apple juice to further improve the health benefits and functionality (carrot juice,)
- New pressing conditions (use of pectolytic enzymes) or concentration (osmotic concentration)

Innovation, quality and stability issues

Any change/action on processing and formulation of a beverage requires an optimisation step to identify factors affecting its expected quality, safety and stability.

Stability

- microbial
- enzymatic
- physical (e.g. colloidal)
- chemical (e.g. oxidation)

When tea steeps, volatile flavor and aroma compounds are released. This is fine for consumers enjoying a cup of tea at home, but manufacturers of tea ingredients want to ensure that these compounds are not lost during production. They use a process that captures the compounds to develop a final tea extract that is as close to freshly brewed tea as possible. Or thousands offsets thinkstack

Innovation, quality and stability issues

Any change/action on processing and formulation of a beverage requires an optimisation step to identify factors affecting its expected quality and stability.

Formulation

- selection ingredients and additives
- recipe/formulation

Processing main factors:

- Technological parameters
- Formulation properties
 - pH (high, low acidity)
 - Ingredients (nutrients, natural/added antioxidants....)
 - expected shelf-life (stability: microbial, enzymatic, ...)

Conclusions

Innovation in Processing & Beverage Design and Development require adequate knowledge, scientific and technological skills and competences.

THANKS FOR YOUR ATTENTION

Paola Pittia ppittia@unite.it